Local Translation Prediction with Global Sentence Representation
نویسندگان
چکیده
Statistical machine translation models have made great progress in improving the translation quality. However, the existing models predict the target translation with only the sourceand target-side local context information. In practice, distinguishing good translations from bad ones does not only depend on the local features, but also rely on the global sentence-level information. In this paper, we explore the source-side global sentence-level features for target-side local translation prediction. We propose a novel bilingually-constrained chunkbased convolutional neural network to learn sentence semantic representations. With the sentencelevel feature representation, we further design a feed-forward neural network to better predict translations using both local and global information. The large-scale experiments show that our method can obtain substantial improvements in translation quality over the strong baseline: the hierarchical phrase-based translation model augmented with the neural network joint model.
منابع مشابه
Statistical Machine Translation through Global Lexical Selection and Sentence Reconstruction
Machine translation of a source language sentence involves selecting appropriate target language words and ordering the selected words to form a well-formed target language sentence. Most of the previous work on statistical machine translation relies on (local) associations of target words/phrases with source words/phrases for lexical selection. In contrast, in this paper, we present a novel ap...
متن کاملSyntactic Category Prediction for Improving Translation Quality in English-Korean Machine Translation
This paper proposes the syntactic category prediction for improving translation quality. In parsing using sentence segmentation, the segments are separately parsed and then the parsing results of each segment are combined to generate a global sentence structure. The syntactic category prediction guides the parser to identify relationships among segments and to select the correct parsing results...
متن کاملLink Prediction using Network Embedding based on Global Similarity
Background: The link prediction issue is one of the most widely used problems in complex network analysis. Link prediction requires knowing the background of previous link connections and combining them with available information. The link prediction local approaches with node structure objectives are fast in case of speed but are not accurate enough. On the other hand, the global link predicti...
متن کاملSyntax-Directed Attention for Neural Machine Translation
Attention mechanism, including global attention and local attention, plays a key role in neural machine translation (NMT). Global attention attends to all source words for word prediction. In comparison, local attention selectively looks at fixed-window source words. However, alignment weights for the current target word often decrease to the left and right by linear distance centering on the a...
متن کاملMental Representation of Cognates/Noncognates in Persian-Speaking EFL Learners
The purpose of this study was to investigate the mental representation of cognate and noncognate translation pairs in languages with different scripts to test the prediction of dual lexicon model (Gollan, Forster, & Frost, 1997). Two groups of Persian-speaking English language learners were tested on cognate and noncognate translation pairs in Persian-English and English-Persian directions with...
متن کامل